
SOS EXPLORER: ISR TWENTY-TWO SYSTEM TOY PROBLEM

A Description

SoS Explorer represents a system of systems architecture using a meta-architecture comprised of
systems and interfaces. The individual systems’ contribution to the SoS are modeled using cha-
racteristics, capabilities, and interface feasibility. Characteristics are real-valued and represent
quantifiable data necessary for computing key performance measures. Typical examples of charac-
teristics are cost, time-to-complete, mean time between failures, etc. Capabilities are represented
using boolean values because systems either have a particular capability or not. These are often
referred to as “little-C” capabilities from the SoS perspective. Examples of such capabilities are
radar, UHF radio, and GPS.

This problem demonstrates how to solve an architecting problem in the intelligence, surveillance,
and reconnaissance (ISR) domain using SoS Explorer with a toy example. Twenty-two systems are
available to best solve an ISR problem that is defined in terms of four given objectives: affordability,
performance, flexibility, and robustness. The required capabilities are: EO/IR, SAR, Exploit, C2,
and Comm. As well as selecting a set of systems, a communications network topology must be
be defined in terms of the system interfaces. The only constraint is that each capability must be
present in the solution.

There are eleven types of systems with varying capability mixes available. These are: fighter
(EO/IR equipped), fighter (SAR equipped), remotely piloted aircraft (RPA), Lockheed U-2, de-
fense support program (DSP) satellite warning, E-8 JSTARS, theater exploitation, ConUS warning
system, command & control (C2), line-of-sight repeater (LOS), and beyond line-of-sight repeater
(BLOS). The characteristics and capabilities of each system are described in Tables 1 and 2. All
numbers are relative except for the number of assets available.

Table 1: System characteristics

System No. Avail. I/F Dev Cost Ops Cost Perf Dev Time

Fighter 3 0.2 10.0 10 1

Fighter SAR 3 0.7 15.0 10 1

RPA 4 0.4 2.0 15 1

U-2 1 0 15.0 3 0

DSP 1 1.0 0.1 8 1

JSTARS 1 0.1 18.0 40 1

Theater Exploit 2 2.0 10.0 10 1

ConUS 1 0.2 0.1 15 0

C2 2 1.0 2.0 12 1

LOS 2 0.2 0.1 10 1

BLOS 2 0.5 3.0 10 1

Page 1 of 4



SOS EXPLORER: ISR TWENTY-TWO SYSTEM TOY PROBLEM

Table 2: System capabilities

System EO/IR SAR Exploit C2 Comm

Fighter X X

Fighter SAR X X

RPA X X

U-2 X

DSP X

JSTARS X X

Theater Exploit X X

ConUS X X

C2 X X

LOS X

BLOS X

B Modeling

B.1 Overview

When using SoS Explorer, it is important to note that it seeks to maximize objectives. Therefore
entities that need to be minimized, such as cost, must be recast as a maximized entity such as
affordability. The objectives are calculated by passing the objective functions the characteristic,
capability, and feasible interfaces matrices along with a meta-architecture instance defining the SoS
architecture.

The characteristics matrix, (C), has dimensions NC × NS where NC is the number of cha-
racteristics and NS is the number of systems. Cij is defined as the ith characteristic of the jth
system. Likewise, the capabilities matrix, (C′), has dimension NC′ ×NS where N ′

C is the number
of capabilities. Finally, the feasible interface matrix, (F ), has dimension NS ×NS .

Together, the systems, characteristics (C), capabilities (C′), and feasible interfaces (F ) define
the problem’s meta-architecture. From an optimization standpoint, the meta-architecture is static
and stands apart from an architecture. In SoS Explorer, an architecture is simply a set of systems
and interfaces. These sets are defined in a vector called a chromosome by the evolutionary algo-
rithms used to optimize the architecture. The functions S and I extract the system and interface
information from a chromosome and are defined as

S(X, i) =

{
1 if the ith system is selected in X

0 otherwise
(1)

and

I(X, i, j) =

{
1 if the ith and jth systems have an interface in X

0 otherwise
(2)

where X is the chromosome.

Page 2 of 4



SOS EXPLORER: ISR TWENTY-TWO SYSTEM TOY PROBLEM

B.2 Objectives

The objectives are individually modeled as a function of the chromosome containing the selected
systems and interfaces along with the characteristics, capabilities, and feasible interfaces. The first
objective, affordability (O1), is related to the sum of the participating systems’ individual costs
along with the cost of implementing included interfaces and can be modeled as

O1(X,C) = −
NS∑
i=1

S(X, i)

CCost,i +

NS∑
j=1
j 6=i

S(X, j)CCost,j

 (3)

where X is the chromosome representing the meta-architecture. The second objective, performance
(O2), The performance is the sum of the participating systems’ individual performance which is
augmented by interfaces to other participating systems:

O2(X,C) =

NS∑
i=1

S(X, i)CPerf,i

NS∏
j=1

[
1 + δ S(X, j) I(X, i, j)

]
(4)

where δ is the augmentation factor and is set to 0.02 for this problem. The next objective, flexibility
(O3), is a measure of the surplus capability available and can be modeled using:

O3(X,C′) = −NC′ +

NS∑
i=1

S(X, i)

NC′∑
j=1

C′
ji (5)

Hence, flexibility is related to the ability to perform substitutions within the architecture. The final
objective, robustness (O5), is the effect losing the highest performing asset has on the SoS and can
be modeled as

O4(X) = −max
[

S(X, 1)CPerf,1, S(X, 2)CPerf,2, . . . ,S(X, NS)CPerf,NS

]
(6)

B.3 Constraints

The evolutionary algorithms allow constraints to be enforced via a mechanism known as chromo-
some fixing. Using this technique, the chromosomes are modified to meet feasibility requirements.
An issue with using fixing is that it can work against the evolutionary process. To mitigate this,
the actual chromosomes are not modified, but rather a function, G, is used to map the chromo-
some to it’s feasible compliment which is then passed into the objective function. In other words,
when constraints are enabled then the objectives are passed G(X) instead of X. This way, the
evolutionary operations are not undermined by the enforcing of constraints.

There are two constraints required by this problem. The first constraint is that each capability
must be present in the architecture. This may be performed by Algorithm 1. The second constraint
is that all the interfaces must be feasible. The algorithm for removing infeasible interfaces is shown
in Algorithm 2.

Page 3 of 4



SOS EXPLORER: ISR TWENTY-TWO SYSTEM TOY PROBLEM

Algorithm 1 Add missing capabilities

1: procedure RequireAllCapabilities(X,C′)
2: for i← 1 to NC′ do . For each capability
3: j ← 0 . System index
4: k ← −1 . Non-selected system with capability i
5: hasCapability ← false
6: while ¬hasCapability ∧ (j ≤ NS) do
7: if C′

ij then . If system j has capability i
8: if S(X, j) then . If system j is present
9: hasCapability ← true . Capability i is present

10: else
11: k ← j . Remember non-selected system with capability i
12: end if
13: end if
14: j ← j + 1 . Next system
15: end while
16: if ¬hasCapability ∧ (k 6= −1) then . If capability i is missing
17: X′ ← SetSystem(X, k, true) . Add system k with capability i
18: else
19: X′ ←X . No changes to chromosome
20: end if
21: end for
22: return X′

23: end procedure

Algorithm 2 Remove infeasible interfaces

1: procedure RemoveInfeasibleInterfaces(X,F )
2: X′ ←X . Copy chromosome
3: for i← 1 to NS do . For each system i
4: for j ← 1 to NS do . For each system j
5: if i 6= j then . Only consider different systems
6: if I(X, i, j) then . If interface is present
7: if ¬(S(X, i) ∧ S(X, j) ∧ Fij) then . If not feasible
8: X′ ← SetInterface(X′, i, j, false) . Remove interface
9: end if

10: end if
11: end if
12: end for
13: end for
14: return X′

15: end procedure

Page 4 of 4


	Description
	Modeling
	Overview
	Objectives
	Constraints


