
SOS EXPLORER QUICK GUIDE

A Introduction

SoS Explorer allows an architect to computationally produce optimal architectures for systems of
systems including cyber-physical systems. The solutions (architectures) are represented as graphs
where the systems are nodes and the interfaces between systems are edges. In order to produce
optimal architectures, a set of objectives is given to an optimization method. The set of objectives
embodies the key performance measures (KPMs) of the architecture. In order to calculate the
objectives, information regarding the systems is required. In the approach taken by SoS Explorer
there are three categories of information associated with each system:

� Characteristics—Quantifiable attributes such as cost or performance parameters. These are
real (floating point) values.

� Capabilities—Functionality required by the system of systems. These are Boolean values
representing which ones are present in the current systems.

� Feasible interfaces—Stipulates which systems may interface with one another. These are
Boolean values.

Figure 1 shows SoS Explorer after it is opened. It is comprised of three columns. The left
column allows the entry of the systems and their associated characteristics, capabilities, and feasible
interfaces. It also allows a description of the problem to be included. The middle column consists
of the objectives (KPMs), the language in which they are coded, and the optimization method and
overall parameters. The right column is an interactive display of the architecture along with the
button to begin optimization, a progress bar, and controls to page though solutions.

Figure 1: SoS Explorer when first opened.

In order to learn how to use SoS Explorer, let’s work through a very simple problem involving
a communications network.

Page 1 of 13

SOS EXPLORER QUICK GUIDE

B Communications network problem

B.1 Problem definition

In this problem, we are attempting to optimize a small communications network. The network
requires two capabilities: voice and data. The KPMs (objectives) are affordability, voice coverage,
and data coverage, all of which are to be maximized. These will be calculated based upon cost
and range, so these will be the characteristics. There are six systems available for the network:
four different transmitters and two different repeaters. The characteristics and capabilities of each
system are summarized in Table 1 while the feasible interfaces are found in Table 2.

Table 1: Communications network system attributes

System Cost ($1,000’s) Range (km) Voice Data

Transmitter Type A 10 2 X

Transmitter Type B 20 2 X

Transmitter Type C 40 5 X

Transmitter Type D 80 5 X

Repeater 1 30 3

Repeater 2 50 4

Table 2: Communications network feasible interfaces

System Type A Type B Type C Type D Repeater 1 Repeater 2

Transmitter Type A X X

Transmitter Type B X X

Transmitter Type C X X

Transmitter Type D X X

Repeater 1 X X X X X X

Repeater 2 X X X X X X

In order to be feasible, the following constraints must be maintained:

� A network must have both voice and data capability.

� Transmitters may not interface with one another.

� A repeater may have at most one transmitter with which it is interfaced.

� A chain of repeaters may have at most one transmitter interfaced any where in the chain.

Parts of these constraints are handled implicitly through the feasible interfaces defined for each
system. However, others must be enforced explicitly which will be covered later.

Page 2 of 13

SOS EXPLORER QUICK GUIDE

B.2 Modeling the architecture

Now it is time to enter this data into SoS Explorer. First enter the description, characteristic
names, capability names, system names, and objective names as shown in Figure 2. Next enter
the associated data as shown in Figure 3 by selecting each system individually from the system
drop-down box. Notice that where the system names were entered is now where the feasible
interfaces are entered. If you need to add, modify, or delete any of the systems, characteristics, or
capabilities, select <Edit Mode> from the system drop-down box. After you’re finished, save the
project—preferably in its own folder because the next step will create an associated sub-folder.

Figure 2: Enter names of systems, characteristics, capabilities, and objectives.

Page 3 of 13

SOS EXPLORER QUICK GUIDE

Figure 3: Enter data for each system.

B.3 Modeling the objectives

The problem is modeled through its objectives and a set of constraints. The default constraints
require that solutions include each required capability and exclude any infeasible interfaces. These
can be modified in the same way as the objectives and will be addressed later. The objectives may
be modeled using Python, MATLAB, or F#. For this example, Python will be used because it
comes with SoS Explorer while the others must be installed separately (F# is free from Microsoft).
In SoS Explorer, select both of the Python radio buttons in order to evalute the objectives using
Python. Next choose File�Create Python Files. This will create a number of Python
files in a sub-folder named “Python”. These are template files designed to assist in modeling the
objectives and constraints. The objectives are in the files beginning with Objective_.

In order to model the objectives, the following notation will be employed: the characteristics
matrix, (C), has dimensions NC × NS where NC is the number of characteristics and NS is the
number of systems. Cij is defined as the ith characteristic of the jth system. Likewise, the
capabilities matrix, (C′), has dimension NC′×NS where NC′ is the number of capabilities. Finally,
the feasible interface matrix, (F), has dimension NS ×NS .

It is important to note that SoS Explorer uses evolutionary algorithms for optimization. Evolu-
tionary algorithms represent solutions, in this case architectures, as chromosomes. Therefore, the
objectives take as parameters a chromosome, characteristics, capabilities, feasible interfaces, and
some others beyond discussion here. The chromosome contains which systems and interfaces are
selected and nothing more. It is helpful to introduce functions representing this: the functions S
and I extract the system and interface information from a chromosome and are defined as

S(X, i) =

{
1 if the ith system is selected in X

0 otherwise
(1)

Page 4 of 13

SOS EXPLORER QUICK GUIDE

and

I(X, i, j) =

{
1 if the ith and jth systems have an interface in X

0 otherwise
(2)

where X is the chromosome.
First let’s model affordability (O1). For this, we will use the formula

O1(X,C) = −
NS∑
i=1

S(X, i)CCost,i (3)

which is simply the negative of the sum of the costs of all selected systems.
To implement this in Python, open the Objective_Affordability.py file in a text editor.

You will notice that there are indices defined for each of the systems, characteristics, and capabilities
along with a function header and the helper functions hasSystem and hasInterface. These
should not be modified. The calculation should replace all of the code found following the comment
Replace below with actual objective calculation!. Use the following code for this
calculation:

Add up the co s t o f each p a r t i c i p a t i n g system
t o ta lCos t = 0 .0
for i in range (0 , numSystems) :

i f hasSystem (i) :
c o s t = c h a r a c t e r i s t i c s [i , char Cost1000s]
t o ta lCos t += cos t

Return r e s u l t s
return −t o ta lCos t

The second objective, voice coverage (O2), can be modeled using

O2(X,C,C′) = π

NS∑
i=1

S(X, i) V(C′, i)

C2
Range,i

+

NS∑
j=1
j 6=i

S(X, j) I(X, i, j) R(C′, j) Γ(C′, i, j)

C2
Range,j

+

NS∑
k=1
k 6=i,j

S(X, k) I(X, j, k) R(C′, k) Γ(C′, j, k)C2
Range,k




(4)

where

V(C′, i) =

{
1 if the ith system is a voice transmitter (voice in C′)

0 otherwise
(5)

R(C′, i) =

{
1 if the ith system is a repeater (no data or voice in C′)

0 otherwise
(6)

Page 5 of 13

SOS EXPLORER QUICK GUIDE

and a loss factor

Γ(C′, i, j) =

{
0.5 if R(C′, i) > R(C′, j)

0.7 otherwise
(7)

This is roughly the circular area covered by the range of each selected transmitter augmented by
each selected repeater (with a loss factor for overlap) that is interfaced to it. Repeater chains are
assumed to have a maximum of two repeaters. The following code implements this calculation:

Define i sVoiceTransmi t ter () f unc t i on
Returns whether the g iven system i s a vo i c e t r an smi t t e r
def i sVo i ceTransmi t t e r (i) :

hasVoice = c a p a b i l i t i e s [i , cap Voice]
return hasVoice

Define i sRepea ter () f unc t i on
Returns whether the g iven system i s a repea t e r
def i sRepeate r (i) :

hasVoice = c a p a b i l i t i e s [i , cap Voice]
hasData = c a p a b i l i t i e s [i , cap Data]
return not (hasVoice or hasData)

Add up coverage area f o r each p a r t i c i p a t i n g system
coverageArea = 0 .0
for i in range (0 , numSystems) :

i f hasSystem (i) and i sVo i ceTransmi t t e r (i) :
rangeSystem1 = c h a r a c t e r i s t i c s [i , char Rangekm]
coverageArea += rangeSystem1 * rangeSystem1
for j in range (0 , numSystems) :

i f hasSystem (j) and i sRepeate r (j) and h a s I n t e r f a c e (i , j) :
rangeSystem2 = c h a r a c t e r i s t i c s [j , char Rangekm]
i f rangeSystem1 > rangeSystem2 :

coverageArea += 0.5 * rangeSystem2 * rangeSystem2
else :

coverageArea += 0.7 * rangeSystem2 * rangeSystem2
for k in range (0 , numSystems) :

i f hasSystem (k) and i sRepeate r (k) and h a s I n t e r f a c e (j , k) :
rangeSystem3 = c h a r a c t e r i s t i c s [k , char Rangekm]
i f rangeSystem2 > rangeSystem3 :

coverageArea += 0.5 * rangeSystem3 * rangeSystem3
else :

coverageArea += 0.7 * rangeSystem3 * rangeSystem3

Return r e s u l t s
return 3 .14 * coverageArea

Page 6 of 13

SOS EXPLORER QUICK GUIDE

The third objective, data coverage (O3), is handled in a similar fashion using

O3(X,C,C′) = π

NS∑
i=1

S(X, i) D(C′, i)

C2
Range,i

+

NS∑
j=1
j 6=i

S(X, j) I(X, i, j) R(C′, j) Γ(C′, i, j)

C2
Range,j

+

NS∑
k=1
k 6=i,j

S(X, k) I(X, j, k) R(C′, k) Γ(C′, j, k)C2
Range,k




(8)

where

D(C′, i) =

{
1 if the ith system is a data transmitter (data in C′)

0 otherwise
(9)

The following code implements this calculation:

Define isDataTransmit ter () f unc t i on
Returns whether the g iven system i s a data t r an smi t t e r
def i sDataTransmitter (i) :

hasData = c a p a b i l i t i e s [i , cap Data]
return hasData

Define i sRepea ter () f unc t i on
Returns whether the g iven system i s a repea t e r
def i sRepeate r (i) :

hasVoice = c a p a b i l i t i e s [i , cap Voice]
hasData = c a p a b i l i t i e s [i , cap Data]
return not (hasVoice or hasData)

Add up coverage area f o r each p a r t i c i p a t i n g system
coverageArea = 0 .0
for i in range (0 , numSystems) :

i f hasSystem (i) and i sDataTransmitter (i) :
rangeSystem1 = c h a r a c t e r i s t i c s [i , char Rangekm]
coverageArea += rangeSystem1 * rangeSystem1
for j in range (0 , numSystems) :

i f hasSystem (j) and i sRepeate r (j) and h a s I n t e r f a c e (i , j) :
rangeSystem2 = c h a r a c t e r i s t i c s [j , char Rangekm]
i f rangeSystem1 > rangeSystem2 :

coverageArea += 0.5 * rangeSystem2 * rangeSystem2
else :

coverageArea += 0.7 * rangeSystem2 * rangeSystem2
for k in range (0 , numSystems) :

i f hasSystem (k) and i sRepeate r (k) and h a s I n t e r f a c e (j , k) :
rangeSystem3 = c h a r a c t e r i s t i c s [k , char Rangekm]
i f rangeSystem2 > rangeSystem3 :

coverageArea += 0.5 * rangeSystem3 * rangeSystem3
else :

Page 7 of 13

SOS EXPLORER QUICK GUIDE

coverageArea += 0.7 * rangeSystem3 * rangeSystem3

Return r e s u l t s
return 3 .14 * coverageArea

Now that the objectives are modeled, SoS Explorer can evaluate architectures. The SoS Ex-
plorerobjectives should now have numeric values associated with them as in Figure 4. You can
right-click on nodes to select whether or not a system is participating and left-click and drag bet-
ween nodes to create interfaces. Interfaces may be removed by right-clicking on them and selecting
“Remove”. Left-clicking an empty area allows for a note to be added or edited. However, the
end-goal is to have the computer do the heavy-lifting, so the evolutionary algorithms will generate
the architectures for us. These architectures are still editable, and it is easy to make copies of
architectures, delete them, remove duplicates, and many other operations using the “Architecture”
menu. Also, SoS Explorer allows multiple solutions to be on hand with paging buttons in the lower
right corner. In order to allow the optimizer to create feasible architectures, there is one step
remaining: adding constraints.

Figure 4: Objectives are now evaluated.

B.4 Modeling the constraints

The evolutionary algorithms allow constraints to be enforced via a mechanism known as chromo-
some fixing. Using this technique, the chromosomes are modified to meet feasibility requirements.
An issue with using fixing is that it can work against the evolutionary process. To mitigate this,
the actual chromosomes are not modified, but rather a function, G, is used to map the chromosome
to it’s feasible compliment which is then passed into the objective function. In other words, when
constraints are enabled then the objectives are passed G(X) instead of X. This way, the evolutio-
nary operations are not undermined by the enforcing of constraints. The file where the constraints
are modeled is FixChromosome.py.

Page 8 of 13

SOS EXPLORER QUICK GUIDE

There are four constraints required by this problem. The first two constraints, both voice and
data capabilities and no infeasible interfaces are already performed by the template code. The
other two must be added. The following code may be added to the end of the following in order
to require that no more than one transmitter per repeater and no more than one transmitter per
repeater chain:

Define i sRepea ter () f unc t i on
Returns whether the g iven system i s a repea t e r
def i sRepeate r (i) :

hasVoice = c a p a b i l i t i e s [i , cap Voice]
hasData = c a p a b i l i t i e s [i , cap Data]
return not (hasVoice or hasData)

Define hasTransmit ter () f unc t i on
Returns whether the g iven system i s i n t e r f a c e d to a t r an smi t t e r
def hasTransmitter (i) :

for j in range (0 , numSystems) :
I f d i f f e r e n t systems with an i n t e r f a c e and t r an smi t t e r
i f i != j and h a s I n t e r f a c e (i , j) and i sTransmi t t e r (j) :

return True
return False

Limit r ep ea t e r s to one t r an smi t t e r i n t e r f a c e
for i in range (0 , numSystems) :

i f i sRepeate r (i) :
count = 0
for j in range (0 , numSystems) :

I f d i f f e r e n t systems with an i n t e r f a c e and t r an smi t t e r
i f i != j and h a s I n t e r f a c e (i , j) and i sTransmi t t e r (j) :

Limit to one t r an smi t t e r per r epea t e r
count += 1
i f count > 1 :

s e t I n t e r f a c e (i , j , Fa l se)

Limit r ep ea t e r s to one t r an smi t t e r in chain
for i in range (0 , numSystems) :

i f i sRepeate r (i) and hasTransmitter (i) :
for j in range (0 , numSystems) :

I f d i f f e r e n t systems with an i n t e r f a c e
i f i != j and h a s I n t e r f a c e (i , j) :

Limit to one t r an smi t t e r per r epea t e r
i f i sRepeate r (j) :

for k in range (0 , numSystems) :
I f d i f f e r e n t systems with an i n t e r f a c e
i f i != k and j != k and h a s I n t e r f a c e (j , k) :

i f i sTransmi t t e r (k) :
s e t I n t e r f a c e (j , k , Fa l se)

After this is added, we are ready to run the optimizer.

Page 9 of 13

SOS EXPLORER QUICK GUIDE

C Optimization

There are two basic categories of optimization: single objective and multiple objective. Multiple ob-
jective is actually simpler to use because it doesn’t require a function to combine the given objective
into a single overall objective. Therefore, we will first tackle multiple objective optimization.

C.1 Multiple objective optimization

First make sure that “MaOEA-DM” is selected for the algorithm, maximum evaluations is set to
10,000, random seeding is off, constraints are on, and that flexible systems negotiation is “None”.
Next, select Parameters�MaOEA-DM and enter the data as shown in Figure 5.

Figure 5: MaOEA-DM parameters menu.

Finally, you’re ready to optimize. Click the “Optimize” button and wait until the process is
finished. Everything is well is you get six results where the first and fifth match Figure 6 and
Figure 7, respectively.

Page 10 of 13

SOS EXPLORER QUICK GUIDE

Figure 6: Solution number 1.

Figure 7: Solution number 5.

These first solution represents the most affordable architecture and the second represents the
highest performing. The rest are other solutions belonging to the optimal (Pareto) set. By paging
through them, the deltas next to the objective values let you know how the values are changing.
You have now finished your first project in SoS Explorer!

C.2 Single objective optimization

Now for single objective optimization. In this case a function must be defined that maps the given
objectives to a single value that represents the overall objective. This function can be created using
a simple weighting scheme or nonlinear methods such as a fuzzy associative memory. The overall
objective function, OOverall, therefore has the form

OOverall : RNO 7→ R (10)

where NO is the number of objectives.

Page 11 of 13

SOS EXPLORER QUICK GUIDE

The Python and F# template code implements a simple weighting scheme while the MATLAB
template code incorporates a fuzzy inference system (requires the MATLAB Fuzzy Logic Toolbox)
that can be edited through SoS Explorer by selecting File�Edit FIS File. Restricting the
discussion to Python for this introduction, the file where the overall objective is implemented
is Overall_Objective.py. As an exercise, let’s modify the code to weight the objectives as
follows: affordability at 25%, voice coverage at 5%, and data coverage at 70%. Replacing the code
after the Replace below with actual objective calculation! comment block with
the following will achieve the desired result:

Def ines we i gh t s f o r each o b j e c t i v e
w A f f o r d a b i l i t y = 0 .25
w VoiceCoverage = 0.05
w DataCoverage = 0.70

Ca lcu l a t e weigh ted o v e r a l l o b j e c t i v e
o v e r a l l = w A f f o r d a b i l i t y * o b j e c t i v e s [o b j A f f o r d a b i l i t y] + \

w VoiceCoverage * o b j e c t i v e s [obj VoiceCoverage] + \
w DataCoverage * o b j e c t i v e s [obj DataCoverage]

Return o v e r a l l o b j e c t i v e
return o v e r a l l

There is one single objective optimizer, “Simple SOGA”, included with SoS ExplorerṠelect it
from the algorithm drop-down box and then click the optimize button. Since the overall objective
is heavily weighted towards data, it would be expected that data coverage will be maximized and
that voice coverage will be minimal since it is weighted less than affordability. The results are
exactly as expected as shown in Figure 8.

Figure 8: Single objective solution.

This is the end of this introductory tutorial. SoS Explorer has other capabilities such as flexible

Page 12 of 13

SOS EXPLORER QUICK GUIDE

systems, but these will be addresses in a separate tutorial.

Page 13 of 13

	Introduction
	Communications network problem
	Problem definition
	Modeling the architecture
	Modeling the objectives
	Modeling the constraints

	Optimization
	Multiple objective optimization
	Single objective optimization

